Increasing the Speed of Scientific Discovery
by Hanna Boshnag
Having been involved in conservation in high school, Liz Glasgo was excited to study biology as an undergraduate. When she got to Bowling Green State University, her catalyst for choosing microbiology was learning about marine microbes: diatoms, dinoflagellates, and radiolarians.
“I thought they were so interesting and beautiful to look at,” she said.
Later her undergraduate research focused on freshwater microbiology. After completing her bachelor’s degree, she chose to come to the University of Tennessee because of the sense of community within the Department of Microbiology.
Glasgo is a part of the Zinser Lab, where her research centers on Vibrio natriegens, a fast-growing, Gram-negative marine bacterium. She is attempting to characterize its oxidative stress response and fitness outcomes following genome reduction.
“V. natriegens is an emerging model organism, and the developments of new techniques and a better understanding of its physiology will be helpful to the scientific community,” she said.
For much of microbiology’s history, Escherichia coli has been the primary model organism for researchers to develop new techniques and understand a variety of biological systems. Discoveries as important as the genetic code, DNA replication, gene regulation, and more have been made possible with E. coli as the go-to organism for microbial study.
So why the potential switch to V. natriegens? The difference in growth rate. The marine bacterium has the fastest known generation time and is much quicker to double when compared with E. coli. This shortened growth time introduces the potential of faster experimentation and advanced genomic techniques. Glasgo’s work to better understand V. natriegens genetics and physiology is, thus, all the more important.
To Glasgo, the most exciting aspect of research is directly carrying out her experiments, and being the first to find out something new.
“A lot of my work has involved genetics and making mutants, which entails a lot of PCRs (polymerase chain reactions) and molecular work,” she said. “Day-to-day, you can usually find me in the hood, working with cultures of bacteria and quantifying them on agar plates.”
E. coli might be able to take a break from its Nobel Prize-winning discoveries and make way for V. natriegens, a speedster bacterium with incredible potential for discoveries. Glasgo is particularly excited about its new applications in bioengineering and synthetic biology.